1,877 research outputs found

    A Low Noise Receiver for Submillimeter Astronomy

    Get PDF
    A broadband, low noise heterodyne receiver, suitable for astronomical use, has been built using a Pb alloy superconducting tunnel junction (SIS). The RF coupling is quasioptical via a bowtie antenna on a quartz lens and is accomplished without any tuning elements. In its preliminary version the double sideband receiver noise temperature rises from 205 K at 116 GHz to 815 K at 466 GHz. This is the most sensitive broadband receiver yet reported for sub-mm wavelengths. Its multi-octave sensitivity and low local oscillator power requirements make this receiver ideal for remote ground observatories or space-borne telescopes such as NASA's Large Deployable Reflector. A version of this receiver is now being built for NASA's Kuiper Airborne Observatory

    A Low Noise Receiver for Submillimeter Astronomy

    Get PDF
    A broadband, low noise heterodyne receiver, suitable for astronomical use, has been built using a Pb alloy superconducting tunnel junction (SIS). The RF coupling is quasioptical via a bowtie antenna on a quartz lens and is accomplished without any tuning elements. In its preliminary version the double sideband receiver noise temperature rises from 205 K at 116 GHz to 815 K at 466 GHz. This is the most sensitive broadband receiver yet reported for sub-mm wavelengths. Its multi-octave sensitivity and low local oscillator power requirements make this receiver ideal for remote ground observatories or space-borne telescopes such as NASA's Large Deployable Reflector. A version of this receiver is now being built for NASA's Kuiper Airborne Observatory

    Construction and Expected Performance of the Hadron Blind Detector for the PHENIX Experiment at RHIC

    Get PDF
    A new Hadron Blind Detector (HBD) for electron identification in high density hadron environment has been installed in the PHENIX detector at RHIC in the fall of 2006. The HBD will identify low momentum electron-positron pairs to reduce the combinatorial background in the e+e−e^{+}e^{-} mass spectrum, mainly in the low-mass region below 1 GeV/c2^{2}. The HBD is a windowless proximity-focusing Cherenkov detector with a radiator length of 50 cm, a CsI photocathode and three layers of Gas Electron Multipliers (GEM). The HBD uses pure CF4_{4} as a radiator and a detector gas. Construction details and the expected performance of the detector are described.Comment: QM2006 proceedings, 4 pages 3 figure

    Dayem-Martin (SIS tunnel junction) mixers for low noise heterodyne receivers

    Get PDF
    Superconducting thin film tunnel junctions of small area (.1 → 1 μm^2) have properties which make them suitable for high frequency (≳100 GHz) heterodyne receivers. Both pair and single quasiparticle tunneling is present in these devices, but it is found that the mixing due to the pair effect is apparently excessively noisy, whereas the single quasiparticle effect has a low noise character which gives hope for near quantum limited performance. The physical effect involved is photon assisted quasiparticle tunneling and was first observed by Dayem and Martin[1]. We have made laboratory tests at 115 and 230 GHz which gave single side band (SSB) mixer noise temperatures of 60 and 300 K respectively. Also we have fabricated a 90-140 GHz receiver for the Caltech Owens Valley Radio Observatory which has an overall receiver noise temperature of about 300 K (SSB)

    Application of a Self-Similar Pressure Profile to Sunyaev-Zel'dovich Effect Data from Galaxy Clusters

    Get PDF
    We investigate the utility of a new, self-similar pressure profile for fitting Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters. Current SZ imaging instruments - such as the Sunyaev-Zel'dovich Array (SZA) - are capable of probing clusters over a large range in physical scale. A model is therefore required that can accurately describe a cluster's pressure profile over a broad range of radii, from the core of the cluster out to a significant fraction of the virial radius. In the analysis presented here, we fit a radial pressure profile derived from simulations and detailed X-ray analysis of relaxed clusters to SZA observations of three clusters with exceptionally high quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis of the SZ and X-ray data, we derive physical properties such as gas mass, total mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find that parameters derived from the joint fit to the SZ and X-ray data agree well with a detailed, independent X-ray-only analysis of the same clusters. In particular, we find that, when combined with X-ray imaging data, this new pressure profile yields an independent electron radial temperature profile that is in good agreement with spectroscopic X-ray measurements.Comment: 28 pages, 6 figures, accepted by ApJ for publication (probably April 2009

    A simultaneous search for prompt radio emission associated with the short GRB 170112A using the all-sky imaging capability of the OVRO-LWA

    Get PDF
    We have conducted the most sensitive low frequency (below 100 MHz) search to date for prompt, low-frequency radio emission associated with short-duration gamma-ray bursts (GRBs), using the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA). The OVRO-LWA's nearly full-hemisphere field-of-view (∼20\sim20,000000 square degrees) allows us to search for low-frequency (sub-100100 MHz) counterparts for a large sample of the subset of GRB events for which prompt radio emission has been predicted. Following the detection of short GRB 170112A by Swift, we used all-sky OVRO-LWA images spanning one hour prior to and two hours following the GRB event to search for a transient source coincident with the position of GRB 170112A. We detect no transient source, with our most constraining 1σ1\sigma flux density limit of 650 mJy650~\text{mJy} for frequencies spanning 27 MHz−84 MHz27~\text{MHz}-84~\text{MHz}. We place constraints on a number of models predicting prompt, low-frequency radio emission accompanying short GRBs and their potential binary neutron star merger progenitors, and place an upper limit of Lradio/Lγ≲7×10−16L_\text{radio}/L_\gamma \lesssim 7\times10^{-16} on the fraction of energy released in the prompt radio emission. These observations serve as a pilot effort for a program targeting a wider sample of both short and long GRBs with the OVRO-LWA, including bursts with confirmed redshift measurements which are critical to placing the most constraining limits on prompt radio emission models, as well as a program for the follow-up of gravitational wave compact binary coalescence events detected by advanced LIGO and Virgo.Comment: 14 pages, 5 figures, ApJ submitte
    • …
    corecore